

HRV Biofeedback Strategies

[Add Questions](#)[Assign](#)[Settings](#)[Review](#)[Duplicate](#)[Print](#)[Delete](#)[▶ Preview Test](#)[↳ Assign Test](#)

Test Introduction

[+ Add Introduction](#)**10 Questions** (10 Points)**Question Bank:** 4,642 Questions

Test Questions

0 Test Assignments

Question 1

Generic Parent » HRVB Tutor

1 pt

What is the normal range for oxygen saturation?

- A. 80%-85%
- B. 85%-90%
- C. 95%-98%
- D. 99%-100%

Question Type: Multiple Choice**Randomize Answers:** No**Date Added:** Thu 20th Jun 2019**Last Modified:** N/A**QID#:** 17,098,661

Correctly answered feedback

The normal range for oxygen saturation is 95-98%. This allows maximum oxygen delivery to body tissues.

Incorrectly answered feedback

The normal range for oxygen saturation is 95-98%. This allows maximum oxygen delivery to body tissues.

Question 2

Generic Parent » HRVB Tutor

1 pt

You should caution your client against forceful breathing because it could produce

- A. hyperventilation.
- B. sympathetic activation.
- C. hyperventilation and sympathetic activation.
- D. decreased oxygen saturation

Question Type: Multiple Choice

Randomize Answers: No

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,687

Correctly answered feedback

You should caution your client against forceful breathing because it could produce hyperventilation and sympathetic activation. Hyperventilation can actually increase oxygen saturation.

Incorrectly answered feedback

You should caution your client against forceful breathing because it could produce hyperventilation and sympathetic activation. Hyperventilation can actually increase oxygen saturation.

Question 3

Generic Parent » HRVB Tutor

1 pt

An adult client's resonance frequency usually lies between

- A. 4.5-6.5 breaths/minute.
- B. 6.5-8.5 breaths/minute.
- C. 8.5-10.5 breaths/minute.
- D. 10.5-12 breaths/minute.

Question Type: Multiple Choice

Randomize Answers: No

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,690

Correctly answered feedback

An adult client's resonance frequency usually lies between 4.5-6.5 breaths/minute.

Incorrectly answered feedback

An adult client's resonance frequency usually lies between 4.5-6.5 breaths/minute.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 4

Generic Parent » Adjunctive Techniques

1 pt

When measuring the resonance frequency in children, you might start with a respiration rate of _____ breaths per minute.

- A. 13.5
- B. 11.5
- C. 9.5
- D. 7.5

Question Type: Multiple Choice

Randomize Answers: No

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,710

Correctly answered feedback

When measuring the resonance frequency in children, you might start with a respiration rate of 9.5 breaths per minute since they have smaller vascular trees than adults.

Incorrectly answered feedback

When measuring the resonance frequency in children, you might start with a respiration rate of 9.5 breaths per minute since they have smaller vascular trees than adults.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 5

Generic Parent » Adjunctive Techniques

1 pt

What should happen to the short-term distribution of HRV power when a client breathes at her resonance frequency?

- A. LF power will increase, while VLF and HF power will decrease.
- B. HF power will increase, while LF power will decrease.
- C. VLF and LF power will increase.
- D. VLF and LF power will increase.

Question Type: Multiple Choice
Randomize Answers: No
Date Added: Thu 20th Jun 2019
Last Modified: N/A
QID#: 17,098,721

Correctly answered feedback

For brief recordings, LF power will increase, while VLF and HF power will decrease when a client breathes at her resonance frequency.

Incorrectly answered feedback

For brief recordings, LF power will increase, while VLF and HF power will decrease when a client breathes at her resonance frequency.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 6

Generic Parent » HRVB Tutor

1 pt

As clients develop greater skill in increasing heart rate variability, you should see greater power around ____ in the ____ band.

- A. 0.03; very low frequency (VLF)
- B. 0.1; low frequency (LF)
- C. 0.2; low frequency (LF)
- D. 0.3; high frequency (HF)

Question Type: Multiple Choice
Randomize Answers: No
Date Added: Thu 20th Jun 2019
Last Modified: N/A
QID#: 17,098,601

Correctly answered feedback

As clients develop greater skill in increasing heart rate variability, you should see greater power around 0.1 Hz in the low frequency (LF) band.

Incorrectly answered feedback

As clients develop greater skill in increasing heart rate variability, you should see greater power around 0.1 Hz in the low frequency (LF) band.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 7

Generic Parent » HRVB Tutor

1 pt

What best describes the breathing technique recommended by Lehrer and colleagues?

- A. inhaling and exhaling through the nose

✓ B. inhaling through the nose and exhaling through pursed lips

C. inhaling and exhaling through pursed lips

D. inhaling through the nose and exhaling through open lips

Question Type: Multiple Choice

Randomize Answers: Yes

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,617

Correctly answered feedback

Lehrer and colleagues recommend inhaling through the nose and exhaling through pursed lips.

Incorrectly answered feedback

Lehrer and colleagues recommend inhaling through the nose and exhaling through pursed lips.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 8

Generic Parent » HRVB Tutor

1 pt

How should respiratory strain gauge and heart rate signals change when a client succeeds during a heart rate variability training session?

✓ A. The peaks and valleys of the two signals should coincide.

B. The peaks and valleys of the two signals should be 180 degrees out of phase.

C. HR should reach its peak 5 seconds before stomach expansion peaks.

D. HR should reach its peak 5 seconds after stomach expansion peaks.

Question Type: Multiple Choice

Randomize Answers: Yes

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,610

Correctly answered feedback

The peaks and valleys of the two signals should coincide when a client succeeds during a heart rate variability training session.

Incorrectly answered feedback

The peaks and valleys of the two signals should coincide when a client succeeds during a heart rate variability training session.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 9

Generic Parent » HRVB Tutor

1 pt

Which of these is essential for effortless breathing?

- A. passive volition
- B. nasal breathing
- C. tidal volumes greater than 2000 ml
- D. oxygen saturation values greater than 98%

Question Type: Multiple Choice

Randomize Answers: Yes

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,629

Correctly answered feedback

Passive volition is essential for effortless breathing.

Incorrectly answered feedback

Passive volition is essential for effortless breathing

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)

Question 10

Generic Parent » Adjunctive Techniques

1 pt

During resonance frequency assessment, a clinician instructs clients to breathe in descending _____ steps.

- A. 1/2-breath-per-minute
- B. 1-breath-per-minute
- C. 1-1/2-breath-per-minute
- D. 2-breath-per-minute

Question Type: Multiple Choice

Randomize Answers: No

Date Added: Thu 20th Jun 2019

Last Modified: N/A

QID#: 17,098,712

Correctly answered feedback

During resonance frequency assessment, a clinician instructs clients to breathe in descending 1/2-breath-per-minute steps.

Incorrectly answered feedback

During resonance frequency assessment, a clinician instructs clients to breathe in descending 1/2-breath-per-minute steps.

[Answers](#) | [Edit](#) | [Duplicate](#) | [Used In](#) | [Reorder](#)

[Remove From Test](#)